This is a data report outlining the a pearson correlation analysis of viral qpcr and clinical score data in the CC lines.
This analysis is based off code documented here:
https://www.r-bloggers.com/r-defining-your-own-color-schemes-for-heatmaps/
library(gplots)
## Warning: package 'gplots' was built under R version 3.2.5
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
library(ggplot2)
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.2.5
sessionInfo()
## R version 3.2.3 (2015-12-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] reshape2_1.4.2 ggplot2_2.2.1 gplots_3.0.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.8 knitr_1.15.1 magrittr_1.5
## [4] munsell_0.4.3 colorspace_1.3-2 stringr_1.1.0
## [7] plyr_1.8.4 caTools_1.17.1 tools_3.2.3
## [10] grid_3.2.3 gtable_0.2.0 KernSmooth_2.23-15
## [13] htmltools_0.3.5 gtools_3.5.0 assertthat_0.1
## [16] lazyeval_0.2.0 yaml_2.1.14 rprojroot_1.1
## [19] digest_0.6.11 tibble_1.2 bitops_1.0-6
## [22] evaluate_0.10 rmarkdown_1.3 gdata_2.17.0
## [25] stringi_1.1.2 scales_0.4.1 backports_1.0.4
oas1b_corr_plot <- read.csv(file="C:\\gale_lab\\oas1b_manuscript\\revisions\\qPCR_and_outcomes.csv", header=T)
#transponse values
m <- melt(cor(oas1b_corr_plot[,c(5:12)], use="pairwise.complete.obs"))
# create a correlation plot image using ggplot2
p <- ggplot(data=m, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + theme(text = element_text(size=20),
axis.text.x = element_text(angle=90, hjust=1))
We update the color panel to show those conditions with the highest correlation.
#set up a coloring scheme using colorRampPalette
red=rgb(1,0,0); green=rgb(0,1,0); blue=rgb(0,0,1); white=rgb(1,1,1)
RtoWrange<-colorRampPalette(c(red, white ) )
WtoGrange<-colorRampPalette(c(white, green) )
p <- p + scale_fill_gradient2(low=RtoWrange(100), mid=WtoGrange(100), high="gray")
p + theme(text = element_text(size=20),
axis.text.x = element_text(angle=90, hjust=1))
In the correlation heatmap above, there is a relationship between viral load and clinical score at days 4 and 7 post infection. There is also a correlation between clinical score and viral load in the brain at day 12 post infection.
But this is against all Oas1b haplotypes, lets see if we observe a correlation in the Null/Null lines (N/N) and Heterozygous lines.
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.2.5
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#filter heterozygous data
oas1b_corr_plot_NF_FN <- filter(oas1b_corr_plot, Oas1b_status %in% c("Null+Functional","Functional+Null"))
m_NF_FN <- melt(cor(oas1b_corr_plot_NF_FN[,c(5:12)],use="pairwise.complete.obs"))
## Warning in cor(oas1b_corr_plot_NF_FN[, c(5:12)], use =
## "pairwise.complete.obs"): the standard deviation is zero
# filter null data
oas1b_corr_plot_NN <- filter(oas1b_corr_plot, Oas1b_status %in% c("Null+Null"))
#plot null null data
m_NN <- melt(cor(oas1b_corr_plot_NN[,c(5:12)],use="pairwise.complete.obs"))
p_NN <- ggplot(data=m_NN, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + theme(text = element_text(size=20),
axis.text.x = element_text(angle=90, hjust=1))
#reset the coloring scheme using colorRampPalette
red=rgb(1,0,0); green=rgb(0,1,0); blue=rgb(0,0,1); white=rgb(1,1,1)
RtoWrange<-colorRampPalette(c(red, white ) )
WtoGrange<-colorRampPalette(c(white, green) )
p_NN <- p_NN + scale_fill_gradient2(low=RtoWrange(100), mid=WtoGrange(100), high="gray")
p_NN + theme(text = element_text(size=20),
axis.text.x = element_text(angle=90, hjust=1))
We note a higher correlation with the clinical score and disease phenotypes in N/N RIXs.
Now lets looks at heterzygous RIXs and their relationships to phenotypes
p_NF_FN <- ggplot(data=m_NF_FN, aes(x=Var1, y=Var2, fill=value)) + geom_tile() + theme(text = element_text(size=20),
axis.text.x = element_text(angle=90, hjust=1))
#reset the coloring scheme using colorRampPalette
red=rgb(1,0,0); green=rgb(0,1,0); blue=rgb(0,0,1); white=rgb(1,1,1)
RtoWrange<-colorRampPalette(c(red, white ) )
WtoGrange<-colorRampPalette(c(white, green) )
p_NF_FN <- p_NF_FN + scale_fill_gradient2(low=RtoWrange(100), mid=WtoGrange(100), high="gray")
p_NF_FN + theme(text = element_text(size=20),
axis.text.x = element_text(angle=90, hjust=1))
We note a lower correlation (but still observable) with the clinical score and disease phenotypes in F/N and N/F RIXs.